

Monday, 19. July 2021

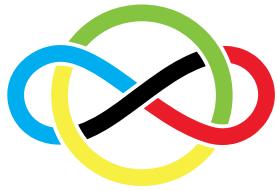
Problem 1. Let $n \geq 100$ be an integer. Ivan writes the numbers $n, n+1, \dots, 2n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.

Problem 2. Show that the inequality

$$\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i - x_j|} \leq \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i + x_j|}$$

holds for all real numbers x_1, \dots, x_n .

Problem 3. Let D be an interior point of the acute triangle ABC with $AB > AC$ so that $\angle DAB = \angle CAD$. The point E on the segment AC satisfies $\angle ADE = \angle BCD$, the point F on the segment AB satisfies $\angle FDA = \angle DBC$, and the point X on the line AC satisfies $CX = BX$. Let O_1 and O_2 be the circumcentres of the triangles ADC and EXD , respectively. Prove that the lines BC , EF , and O_1O_2 are concurrent.



Tuesday, 20. July 2021

Problem 4. Let Γ be a circle with centre I , and $ABCD$ a convex quadrilateral such that each of the segments AB , BC , CD and DA is tangent to Γ . Let Ω be the circumcircle of the triangle AIC . The extension of BA beyond A meets Ω at X , and the extension of BC beyond C meets Ω at Z . The extensions of AD and CD beyond D meet Ω at Y and T , respectively. Prove that

$$AD + DT + TX + XA = CD + DY + YZ + ZC.$$

Problem 5. Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the k -th move, Jumpy swaps the positions of the two walnuts adjacent to walnut k .

Prove that there exists a value of k such that, on the k -th move, Jumpy swaps some walnuts a and b such that $a < k < b$.

Problem 6. Let $m \geq 2$ be an integer, A be a finite set of (not necessarily positive) integers, and $B_1, B_2, B_3, \dots, B_m$ be subsets of A . Assume that for each $k = 1, 2, \dots, m$ the sum of the elements of B_k is m^k . Prove that A contains at least $m/2$ elements.